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Phonon spectra are calculated in single-walled armchair carbon nanotubes within a mass and spring model.
Classical Hamiltonian for the lattice vibrations that include nearest-neighbor, next-nearest-neighbor, and bond
bending interactions has been quantized in the usual way, and then the phonon Hamiltonian is diagonalized by
canonical transformations. Resolvent formalism is used to obtain phonon frequencies in analytical forms,
where a procedure of the Fano problem is employed to choose correct phonon modes. The force constants are
chosen from previous works, and the Raman mode at 1600 cm−1 is set to obtain the other modes. The
electron-phonon interaction is investigated by phonon modulation of the hopping interaction, where the same
canonical transformations are used in accordance with the phonon part. The electron-phonon coupling
strengths in intraband and interband scattering for all modes within nearest-neighbor and radial bond bending
interactions are found in terms of the q wave vectors and other parameters. Further, a different approach for the
diagonalization of the electronic part arising from the tight-binding Hamiltonian is also presented in accor-
dance with the electron-phonon interaction part.
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I. INTRODUCTION

The discovery of carbon nanotubes1 in 1991 and then
their syntheses2,3 in 1993 have stimulated extensive investi-
gations, both experimentally and theoretically, on the physi-
cal properties of these novel materials.4 Since the observa-
tion of superconductivity in nanotubes5 and nanotube ropes,6

electron-phonon interactions and superconductivity7 have
been a focus of interest in these one-dimensional systems.

Electron-phonon interaction plays a pivotal role in under-
standing electronic, optical, and transport properties of car-
bon nanotubes. This interaction is closely associated with
phonons, and therefore it is essential to know phonon spectra
in every respect. Early works on the subject are based on the
zone-folding method,8,9 which is not a good approximation
for the phonons because it fails, especially in the low-
frequency region, to give correct nature of the modes.10

There exist some models predicting two acoustical modes,
longitudinal and torsional, which increase linearly and a dou-
bly degenerate flexure mode, increasing as a square of the
wave vector near the � point: These are Born’s perturbation
technique within a lattice dynamical model11 and continuum
model.10,12 Recent studies of the graphene and single-walled
carbon nanotube �SWCNT�, based on the model of lattice
dynamics with force-constant matrix,13 an ab initio supercell
approach,14 and pseudopotential-density-functional theory15

reveal these four acoustical phonon modes but only the
graphene shows quadratically dispersed flexure mode near
the � point. This discrepancy in nanotubes arises from the
fact that calculations using potential functions that violate
certain symmetry rules fail to give flexure modes.16 Symme-
try groups of SWCNTs are identified as line or rod groups17

and are successfully applied to lattice dynamics of SWCNT
in recent works, in which a symmetry-based force-constant
approach18–20 is used to obtain phonon spectra. In a more
recent work,21 the symmetry analysis is considered in rota-
tional and translational invariance of the vibrational potential

for the lattice dynamics of SWCNT, where the dispersion of
the acoustic and flexure modes is precisely calculated in the
low-frequency region.

Raman and infrared spectroscopies reveal the unusual
electronic and phonon properties of SWCNTs and have been
extensively studied,22–24 and their classifications according to
nanotubes symmetries are given in a recent work.25 The best
known Raman-active mode is the radial breathing mode
which is unique to SWCNTs, and its frequency is propor-
tional to the inverse diameter of the tube.26

First electron-phonon interaction studies in nanotubes are
achieved by employing the tight-binding model for the inter-
action of electrons with acoustical phonons27 and for linear
electron-phonon coupling displaying a deformation type of
approximation.28 Scattering by optical phonons is important
for transport properties and for the major source of broaden-
ing for certain Raman peaks.29 The first attempt to calculate
the interaction of an electron with acoustical and optical
phonons is achieved by assuming phonon modulation of the
hopping interaction in armchair and zigzag nanotubes.30 Re-
cently, the electron-phonon matrix element in SWCNTs is
developed within the tight-binding approach based on den-
sity functional theory31 and in order to study its effect on the
Raman intensity32 and intraband electron-phonon
scattering.33

The aim of the present paper is to obtain the Hamiltonian
of a system of electrons and phonons in armchair tubes,
namely, as H=H0+Hel-ph

tot , where the first term is a noninter-
acting part and consists of the sum of electron and phonon
energies, expressed in the form H0=Hel+Hph,

H0 = J0 �
j��m��

�
�i

�CB,j+�i

† CA,j + CA,j
† CB,j+�i

�

+ �
q��q,��

�
i

��̃i�q��aqi
† aqi +

1

2
� .
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Here, the first term is the well-known spinless tight-binding
Hamiltonian with a hopping parameter J0=2.4–3.1 eV,
wherein the terms in the brackets represent hopping of an
electron from the carbon atom A to its three nearest-neighbor
B atoms or vice versa, respectively. The second one is the
dispersion for phonons in armchair SWCNTs. For a �n ,n�
armchair SWCNT, it has only n+1 component at each i
which takes six values, since two different carbon atoms in
the unit cell of the graphene have six degrees of freedom.
Therefore, we have 6 �n+1� distinct phonon branches, and
they are all calculated analytically in the framework of the
theory developed here.

In the present paper, as well as phonon frequencies �̃i�q�,
we give full analytical expressions for their corresponding
electron-phonon interaction amplitudes. In Sec. II, the coor-
dinates for the description of the model are summarized. In
Sec. III, the lattice vibrations are treated classically at first,
and then the quantization procedure is introduced. Through
canonical transformations and resolvent formalism, the pho-
non frequencies are obtained analytically in this section. In
Sec. IV, the electron-phonon interactions are investigated and
the full Hamiltonian is obtained. The paper ends with a con-
clusion section.

II. COORDINATES

We are only concerned, throughout this work, with the
phonon dispersion relations and their associated electron-
phonon interactions in SWCNTs having armchair geometry,
based on a model which is originally suggested by Mahan.30

We construct and realize our model so as to be compatible
with Mahan’s arguments, dependent on the armchair
geometry.34 Therefore, it is quite instructive, from our point
of view, to start with his coordinate description. An ideal
nanotube can be thought of as a honeycomb lattice of carbon
atoms that has been rolled up to make a seamless cylinder. It
appears that the two-dimensional �2D� hexagonal lattice has
two types of carbon atoms, A and B, which are separated by
a distance a between neighboring atoms. While the unit cell
of the 2D hexagonal lattice contains two carbon atoms, in the
case of the nanotube, this number is increased considerably,
depending on the chirality.4 Let R be the radius of the tube;
then we introduce two angles which are very useful through-
out our investigations: the angle �1 between A and B atoms
along the circumference and the angle �2 between A and B
atoms that are first neighbors but displaced along the z direc-
tion. Both angles can be seen in Fig. 1. It should be stated
here that the present approach is valid for SWCNTs with
large radius, i.e., for tubes wherein the relation �1	a /R
holds. There are also considerations of electron-phonon in-
teractions in ultrasmall-radius carbon nanotubes35 within the
framework of an empirical tight-binding method. Further-
more, it is assumed that the nanotube has a finite length that
is much larger than its diameter so that the caps of the tubes
can be neglected.

The lattice coordinates of a two-dimensional graphene
plane are defined by the vectors Rij = ia1+ ja2 with integer i
and j, where a1=
3a�
3 /2,1 /2� and a2=
3a�
3 /2,−1 /2�
are the base vectors, as shown in a �x ,y� coordinate system

in Fig. 2, whose magnitude is the lattice constant of
graphene, i.e., 
3a, where a is the nearest-neighbor distance
between two carbon atoms, i.e., a=aC-C=1.42 Å. When this
plane is rolled up34 into a cylinder to form an armchair tube
�n ,n�, the coordinates are to be designated by R�m=�a1

+m�a1+a2�, where the integer � denotes the position along
the z axis and takes the values of �=0,1 , . . . ,N, where N is
the number of the atomic layers along the z axis and m labels
the carbon atoms along the circumference of the tube and
takes the values of m=0,1 , . . . ,n−1,30 wherein the linear �
and angular m quasimomenta quantum numbers are intro-

duced. Instead, quantum numbers �̃ and m̃ of helical and
pure angular momentum may be used to assign both elec-
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FIG. 1. A three-dimensional plot of a �10,10� armchair SWCNT
showing the nearest- and next-nearest neighbors of carbon atom A
with the related angles used in the text.
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FIG. 2. Graphical picture of how the atomic layers of the
graphene are labeled. Graphical illustrations of nearest- and next-
nearest neighbors of A �B1� atoms are also given in the same pic-
ture together with the relevant phases.
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tronic and phonon band structures.34,36 Two sets of quantum
numbers are biuniquely related.19 In order to express the po-
sitions of any carbon atoms on tubes in �x ,y ,z� coordinates,
we introduce an angle �m�= �2m+����1+�2� such that an A
type of atom is located at the point

RA,m� = �R cos��m��,R sin��m��,c�� , �1�

and three nearest-neighbor B-type atoms at

RB,m� = �R cos��m� + �1�,R sin��m� + �1�,c�� ,

RB,m−1,�+1 = �R cos��m� − �2�,R sin��m� − �2�,c�� + 1�� ,

RB,m,�−1 = �R cos��m� − �2�,R sin��m� − �2�,c�� − 1�� ,

�2�

and six next-nearest-neighbor A-type atoms at

RA,m,��1 = �R cos��m� � �̃�,R sin��m� � �̃�,c�� � 1�� ,

RA,m	1,��2 = �R cos��m��,R sin��m��,c�� � 2�� ,

RA,m	1,��1 = �R cos��m� 	 �̃�,R sin��m� 	 �̃�,c�� � 1�� ,

�3�

where �̃=�1+�2. In fact, �m� is the angle seen by two adja-
cent A or two adjacent B carbon atoms along the circumfer-
ence of the tube. At this point, it is useful to introduce unit
vectors along the direction of carbon-carbon bonds: There
are three unit vectors between atom A and its three nearest-
neighbor B atoms, which are defined by �i

1= �RB,m�
�i�

−RA,m�� /a, and six unit vectors between atom A and its six
next-nearest-neighbor A atoms, which are defined by �i

2

= �RA,m�
�i� −RA,m�� /
3a. Their explicit expressions can easily

be calculated by using Eqs. �2� and �3� together with Eq. �1�.

III. LATTICE VIBRATIONS

Lattice vibrations can be represented by the Hamiltonian

Hlat = �
j

Pj
2

2M
+ �

ij

�V1�Qi,Q j� + V2�Qi,Q j��

+ �
ijk

V3�Qi,Q j,Qk� , �4�

where V1 and V2 are the interaction potentials between the
first- and next-nearest-neighbor carbon atoms, respectively,
and V3 is the potential due to bond bending forces. It is
necessary to consider, at least, the next-nearest-neighbor in-
teractions in order to get a physical result, in particular, to
obtain acoustical and flexure phonon modes.

In order to examine the ionic vibrations, we first define
the displacements of the carbon atoms in three directions:
these are in radial, tangential, and z directions on the tube.
For a type A of carbon atom, they are denoted by
�QA
 ,QA� ,QAz�, and on moving on the tube, it is necessary to
include j��m�� indices to label the other type A of carbon
atoms; therefore,

QA�,j =
1


nN
�

q
QA��q�exp�i�qc� + �� j�� , �5�

where q��q ,�� and � specify directions �
 ,� ,z�. Here,
while the wave vector q is used for the tube axis and is
quasicontinuous for a finite tube, and as is previously noted,
the other quantum number � takes 2n discrete values: �
=0, 	1, 	2, . . . , 	 �n−1� ,n. The three nearest-neighbor at-
oms of QA,m� are �QB,m� ,QB,m−1,�+1 ,QB,m,�−1�, in which each
QB,j can be similarly expressed by

QB�,j+�i
=

1

nN

�
q

QB�
�i� �q�exp�i�qc� + �� j + �i

0�� , �6�

with i=1,2 ,3. Here, it should be remembered that, as is
indicated in the previous section, �i

0’s are phase factors be-
tween atom A and its nearest-neighbor B-type carbon atoms,
and with the help of the geometry given in Fig. 2, they are
found as �1

0=��1, �2
0=−��2+qc, and �3

0=−��2−qc, respec-
tively. In a similar way, the displacement of six next-nearest-
neighbor atoms of A, QA�,j+�i

, can be written down as in Eq.

�6�, but with �i instead of �i
0. These are found as �1=��̃

+qc, �2=2qc, �3=−��̃+qc, �4=−��̃−qc, �5=−2qc, and

�6=��̃−qc.

A. Nearest- and next-nearest-neighbor interactions

By the above considerations, now, one is ready to calcu-
late the potential energy V1 for nearest-neighbor
interactions,16 V1= �K1 /2��i,j��i

1 · �QB,j+�i
−QA,j��2, where K1

is the spring constant that characterizes the central force
along the bonds between carbon atoms. Before calculating
V1, for convenience, it is beneficial to rotate the coordinate
system counterclockwise by an angle � j to a new one that
transforms unit vectors of Cartesian coordinates x̃i’s to unit

vectors of cylindrical coordinates ẽi’s by R̃z with the sym-

bolic matrix equation ẽi= R̃z�� j�x̃i. Here, R̃z is the rotation
about the z axis and ẽi

†����z�, x̃i
†��xyz� are the adjoints of

3
1 column matrices consisting of unit vectors of cylindri-
cal and Cartesian coordinates, respectively. Therefore, it is
now straightforward to express a typical member of displace-
ments of A atoms in terms of transformation matrix elements
as

QA
�q�� + QA��q�� + QAz�q�z

= QA
�q��cos �m�,sin �m�,0� + QA��q�


�− sin �m�,cos �m�,0� + QAz�q��0,0,1� . �7�

Next, the same procedure can easily be applied to a member
of nearest-neighbor B atoms, and hence the associated dis-
placements would then be written as

QB

�i� �q�� + QB�

�i� �q�� + QBz
�i��q�z

= QB

�i� �q��cos��m� + ��i

�,sin��m� + ��i
�,0�

+ QB�
�i� �q��− sin��m� + ��i

�,cos��m� + ��i
�,0�

+ QBz
�i��q��0,0,1� . �8�
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��i
is defined to be �1 or −�2 if the index i is equal to 1 or 2

and 3, respectively. Though it will be used in the remainder
of this section, here is the place to give how the displace-
ments of next-nearest-neighbor atoms of A, i.e., QA

�i��q�, can
be written by using the same hierarchy. This can be achieved
by taking �m�+��i

instead of �m� in Eq. �7�. However, here,

��i
is assigned to be �̃�0� when i=1,6�2,5� and otherwise

−�̃, i.e., for i=3,4. By taking into account this notation and
using Eqs. �7� and �8� together with the related unit vectors
in V1, and similarly in V2, the potential energy functionals for
the nearest- and next-nearest-neighbor interactions become
Vk= �Kk /2�� j��m��� ��q,j

�i�k�2, where

�q,j
�i�k = �i

k · �Qk
�i� − QA� = ei�qc�+��j��̃�i�k, �9�

with k=1 and 2. The explicit forms of all �̃�i�k’s for both
interactions37 arising from Eq. �9� are given in Ref. 16. Now,
it is possible to write down V1 and V2 in compact forms as
Q†AQ with matrices defined by 6
1 column vector Q whose
Hermitian conjugate is Q†= �QA


* QA�
* QAz

* QB

* QB�

* QBz
* � and

with A which is the square matrix of order 6: V1

= �K1 /2��i,j=1
6 Qi

†Aij
�1�Q j. After some algebra, matrix elements

of Aij
�1� can be easily obtained. Nonzero diagonal and nondi-

agonal matrix elements are presented in Appendix A explic-
itly by Eqs. �A1� and �A2�, respectively. We can formally do
the same thing for the next-nearest-neighbor interactions. In
other words, the potential energy functional V2 for the next-
nearest-neighbor interactions has the similar form to V1 but
contains a different matrix A�2� and spring constant K2, in-
stead of A�1� and K1, i.e., one has V2= �K2 /2��i,j=1

6 Qi
†Aij

�2�Q j.
Here, the superscripts 1 and 2 over A refer to the first- and
second-nearest-neighbor interactions, respectively. The ma-
trix A�2� comes out to be in a block form of two �3
3�
matrices, and its nonzero coefficients are also listed in Ap-
pendix A by Eq. �A3�. We also notice that we have two types
of next-nearest-neighbor interactions: One is between the at-
oms A-A and the second one between B-B, and each of them
is included in a single �3
3� submatrix of A�2�.

B. Radial bond bending

Bonds between carbon atoms in the nanotube are bent in
contradistinction to graphene sheets; therefore, it is necessary
to consider bond bending in lattice vibration calculations in
carbon nanotubes �CNTs�. Within the nearest-neighbor inter-
actions, if the unit vector between atoms A and B is �, then
the normal vector n in radial direction at the midpoint of the
bond between A and B is defined by n=�
z. The potential
energy functional due to bond bending is defined by16 V3
= �K3 /2��k��k�2, in which k=1,2 refer to A and B, respec-
tively, and �B�A� is given by �B�A�=�i=1

3 ni · �QA�B�
�i� −QB�A�

�0� �.
Here, these two interactions are simplified as

�A = ei��1�D1
*QB
 − D2

*QB�� − D3QA
,

�B = D1QA
 + D2QA� − ei��1D3QB
, �10�

by means of new coefficients Di whose explicit expressions
are presented in Appendix A. Therefore, the potential energy

functional due to bond bending can be written as V3

= �K3 /2��i,j=1
6 Qi

†Aij
�3�Q j, where the nonzero elements of A�3�

are also given in Appendix A by Eq. �A4�. Consequently,
the total potential energy functional becomes V
= �K1 /2��i,j�k=1

3 rkQi
†Aij

�k�Q j, where the last two interactions
have been scaled according to Kk=rkK1. Finally, we can now
write out the classical Hamiltonian for lattice vibrations as

Hlat =
1

2
M �

q��q,��
�
i=1

6

Q̇i
†Q̇i +

1

2
K1 �

q��q,��
�
i,j

�
k=1

3

rkQi
†Aij

�k�Q j .

�11�

At this stage, it is useful to transform the coordinates to
center of mass system so that quantization of lattice vibra-
tions becomes easy to handle. These are defined as QA�

=Q�+q� /2 and QB�=Q�−q� /2, where Q� and q� are the
center of mass and relative coordinates, respectively, and �
takes values of 1, 2, and 3 and refers to components �
 ,� ,z�
of coordinates Q ,q. It should be noted that this transforma-
tion is achieved concisely in matrix form by defining matri-
ces

C = �1

2
��2I I

2I − I
�

and

QT = �Q
 Q� Qz q
 q� qz�

with a �3
3� unit matrix I. Therefore, introducing center of
mass and relative coordinates corresponds to a coordinate

transformation from Q̄ to Q accomplished by the matrix C:

Q=CQ̄. As a result of this transformation, Eq. �11� becomes

Hlat =
1

2
M �

q��q,��
Q̄
˙ †C†CQ̄

˙
+

1

2
K1 �

q��q,��
Q̄†DQ̄ , �12�

where D=C†ĀC=�k=1
3 rkC†AkC has been used with Āij

=�k=1
3 rkAij

k . Here, since

C†C = �2I 0

0 I/2 � = �2 0

0 0
� � I + I � �0 0

0 1/2 � ,

then the first term in Eq. �12�, in fact, consists of the sum of
kinetic energies of the terms with total mass M0=2M and
with reduced mass �0=M /2. The elements of the matrix D
are defined as Dij = Ãij for i�j�=1,2 ,3�1,2 ,3�, Dij = Ãij /2 for

i�j�=1,2 ,3�4,5 ,6� and j�i�=4,5 ,6�1,2 ,3�, and Dij = Ãij /4

for i�j�=4,5 ,6�4,5 ,6�, wherein the elements Ãij can be ex-

pressed in terms of Āij.
With these transformations and by introducing canonical

momenta PT= �P
 P� Pz p
 p� pz� conjugate to Q̄, it is easy
to show that Eq. �12� becomes
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Hlat
T = �

q��q,��
� 1

2M0
��P
�2 + �P��2 + �Pz�2�

+
1

2�0
��p
�2 + �p��2 + �pz�2�
 +

1

2
K1 �

q��q,��
Q̄†DQ̄ .

�13�

We note that all the concerned matrices are Hermitian.

C. Quantization of lattice waves

It is customary that the quantum mechanical investigation
begins by introducing some creation and annihilation opera-
tors as follows:

Q�
k �q� = � �

2Mk���q�
1/2
�aq� + aq�

† � ,

P�
k �q� =

1

i
�Mk���q��

2

1/2

�aq� − aq�
† �, � = 1,2,3,

�14�

where k��� takes values 1 �1,2,3� and 2 �4,5,6�, and they
refer to center of mass and relative coordinates and mo-
menta, respectively. In other words, Q�

k �P�
k � and Mk are re-

duced to Q��P�� and q��p�� and total and reduced masses,
i.e., M0 and �0, respectively. In Eqs. �14�, aq��aq�

† � defines
annihilation �creation� operators for the center of mass and
relative motions �=1,2 ,3 and �=4,5 ,6, separately; further-
more, ���q� is introduced here as a dummy frequency and
will disappear in a natural way during the diagonalization
procedure. If we substitute Eqs. �14� into Eq. �13� and use
the index i instead of �, then the Hamiltonian becomes

Hph = �
q��q,��

�
i=1

6 ���i
+�q��aqi

† aqi + aqiaqi
† � + ��i

−�q��aqi
2 + aqi

†2�

+
1

2 �
j��i�

��ij�q��aqiaqj
† + aqiaqj + H.c.�
 , �15�

where the frequencies are defined by the following relations:

�i
��q� =

1

4
���i�q� +

K1

2M

Ãii

�i�q�

 ,

�ij�q� =
K1

8M

Ãij + Ãij
*

��i�q�� j�q��1/2 , �16�

where Ãij’s have the property Ãij
* = Ã ji, and their diagonal

components together with nondiagonal ones different from
zero are all presented in Appendix A by Eqs. �A5� and �A6�.
It appears that the first term in the above Hamiltonian is
already diagonalized, while the second and third terms con-
tain bilinear operators; furthermore, the last term comprises a
mixture of center of mass and relative modes. It is possible
to calculate the contribution from bilinear terms of operators
to the energy by introducing canonical transformations, as
achieved in large polaron theory, where application of the

squeezed state transformations makes the bilinear terms di-
agonalize and also generates squeezed phonon states.38 In
general, the unitary transformation method is thoroughly in-
vestigated in condensed matter physics by Wagner,39 and in
the present work, we use relevant transformations of this
reference widely.

D. Diagonalization

1. First diagonalization

In order to diagonalize the second term of Eq. �15�, it is
necessary to make a canonical transformation by a unitary
operator U1=exp�S1�q��, with S1�q�=�k�k�aqk

2 −aqk
†2� /2, un-

der which the operator aqi transforms as ãqi=aqi cosh �i
−aqi

† sinh �i. Hence, the transformed Hamiltonian becomes

H̃ph=�q�i=1
6 �H̃i+ H̃ij�, with

H̃i = ���i
+�q�cosh 2�i − ��i

−�q�sinh 2�i��aqi
† aqi + aqiaqi

† �

+ ���i
−�q�cosh 2�i − ��i

+�q�sinh 2�i��aqi
2 + aqi

†2� �17�

and

H̃ij =
1

2 �
j��i�

��ij�q�exp�− ��i + � j���aqiaqj
† + aqiaqj + H.c.� .

�18�

If tanh 2�i=�i
− /�i

+, then the second term of H̃i vanishes, and

hence it is diagonalized with a new frequency but H̃ij is still
in a nondiagonal form. It should be pointed out that the

variation of the expectation value of H̃i by phonon vacuum,

i.e., �H̃i�0, with respect to �i gives the same condition for
diagonalization, i.e., tanh 2�i=�i

− /�i
+. Since its solution

yields sinh 2�i=�i
− / ��i

+2�q�−�i
−2�q��1/2 and cosh 2�i

=�i
+ / ��i

+2�q�−�i
−2�q��1/2, after the first transformation, the

phonon Hamiltonian becomes

H̃ph =
1

2 �
q��q,��

�
i=1

6

���i
�0��q��aqi

† aqi + aqiaqi
† �

+ �
j��i�

��ij
�0��q��aqi

† aqj + aqi
† aqj

† + H.c.�
 , �19�

where �i
�0��q�= �K1Ãii /2M�1/2 and �ij

�0��q�= �K1 /2M�1/2�Ãij

+ Ãij
*� / �4�ÃiiÃ j j�1/4�. It should be noticed that the new renor-

malized frequencies �i
�0��q� and �ij

�0��q� do not contain the
dummy frequency �i�q� chosen for the quantization proce-
dure of Eqs. �14�. When we calculate �i

�0��q�, we see that, for
�=0, it gives good results for certain optical phonon fre-
quencies such as 170, 865, 1596, and 1600 cm−1 at the �
point of the Brillouin zone, but for the q�0 points, the di-
agonal part is far from giving a satisfactory result for the
phonon spectra �see Fig. 3�; therefore one has to consider
contribution from the new nonlinear terms which requires
further diagonalization.

It is useful to express the above Hamiltonian in dimen-
sionless form by using a typical phonon frequency. If we
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define a frequency �0 by the relation K1 /M =�0
2 /3, then this

gives the well-known Raman line, which is �0=1600 cm−1.
Hence, dimensionless energy and frequencies will be scaled

as H̄= H̃ /��0, �̄i
�0��q�=�i

�0��q� /�0, and �̄ij
�0��q�=�ij

�0��q� /�0,
such that �i

�0��q� and �ij
�0��q� in Eq. �19� become

�̄i
�0��q� = � Ãii

6
�1/2

, �̄ij
�0��q� =

1

2
6

Re Ãij

�ÃiiÃ j j�1/4
. �20�

2. Second diagonalization

After each transformation, the new Hamiltonian contains
the same amount of bilinear terms as the original one, but

frequencies have become renormalized so that they approach
the correct results. In order to get accurate results it appears
that one needs to employ a number of consecutive transfor-
mations. In the present problem, this approach does not give
results as accurate as one expects after several transforma-
tions. However, instead of applying many transformations,
we can make use of one with a slight improvement of its
application on the physical basis.

Instead of considering six components of Eq. �19� alto-
gether, it is advantageous to focus on a single component and
utilize a transformation that will diagonalize it in a way that
includes the correlation of this particular component with the
others. First, we choose the component i of the Hamiltonian
given by Eq. �19�,
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FIG. 3. For �=0, q dependence of the phonon spectra according to Eq. �20� �left panel�. In the right panel, again q dependence of the
phonon spectra, but after the second unitary transformation, according to Eq. �33�, together with their comparison with those found by
Mahan and Jeon �the solid and dashed lines correspond to the results of Eq. �33�, and the dotted lines to those of Ref. 16�. To make the
comparison easy, the results of Ref. 16 are also given in the inset.
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H̄i =
1

2 �
q��q,��

��̄i
�0��q��aqi

† aqi + aqiaqi
† � + �

j��i�
�̄ j

�0��q��aqj
† aqj

+ aqjaqj
† �
 +

1

2 �
q��q,��

�
j��i�

��̄ij
�0��q��aqi

† aqj + aqi
† aqj

† + H.c.�

+ �
k�j

�̄ jk
�0��q��aqj

† aqk + aqj
† aqk

† + H.c.�
 , �21�

where the first term is already diagonal while the second one
is not since we consider the ith component, and the third
term represents the interactions between ith and the other
five components. The fourth term appears to represent the
interactions between the five components, but it includes im-
plicitly the effect of the chosen ith component. The last two
are nonlinear terms and will be neglected in the diagonaliza-
tion procedure. Except the last two terms, the contributions
of the other components to the ith frequency of the first term
can be achieved by a second transformation defined by39

U2=exp�S2�q��, with S2�q�=� j�i� j�aqiaqj
† −aqi

† aqj�. Under
this unitary operator, aqi and aqj transform as

ãqi = aqi cos � − �
j

�̄ j�sin ��aqj , �22�

ãqj = aqi�̄ j sin � + �
k

aqk�� jk − �1 − cos ���̄ j�̄k� , �23�

where �2=�i�j� j
2 or 1=�i�j�̄ j

2 is the normalization condi-
tion for the transformation parameter. It should be noted that,
though we use the same symbol for the transformation pa-
rameter as in U1, they are physically different quantities.
Furthermore, we also note that ãqi and ãqj

† commute:

�ãqi , ãqj
† �=0. Hence, the final transformed Hamiltonian H̄i�

=U2
†H̄iU2 contains, apart from diagonalized operators

�aqiaqi
† +aqi

† aqi�, nondiagonal operators such as aqi
† aqj, aqiaqj

† ,
aqi

2 , aqiaqj , . . ., whose coefficients now comprise sin �, cos �,
�i

�0��q�, and �ij
�0��q�:

H̄i� =
1

2 �
q��q,��

��̃i�aqi
† aqi + aqiaqi

† � + �̃i
+�aqi

†2 + aqi
2 �

+ �
j�i

�̃ j�aqj
† aqj + aqjaqj

† � + �
j�i

�̃ij�aqi
† aqj + aqiaqj

† �

+ �
j��i�

�̃ij
+�aqi

† aqj
† + aqiaqj� + �

j��i�
�
k�j

�̃ jk�aqj
† aqk + aqjaqk

† �

+ �
j��i�

�
k�j

�̃ jk
+ �aqj

† aqk
† + aqjaqk�
 , �24�

where the coefficients �̃ can be easily found after some al-
gebra. Here, we present only the diagonal one, �̃i, i.e.,

�̃i = �̄i
�0� cos2 � + �

j��i�
��̄ j

�0��̄ j
2 sin2 � + �̄ij

�0��̄ j sin � cos �

+ �
k�j

�̄ jk
�0��̄ j�̄k sin2 �
 .

Here, we note that the ith component is coupled with the
other five through �̃ij and �̃ij

+. If we leave out the nonlinear

terms, it is necessary that �̃ij should disappear for a full
decoupling. If we now equate the coefficient �̃ij to zero,
which also corresponds to minimization of the energy with

respect to �̄ j, then we obtain

tan 2� =
�

�̄i
�0� − � − L

, �25�

�̄ j = −
� j + ��̄ij

�0��cot ��/2�
�̄ j

�0� − �� + L� − ���cot ��/2�
, �26�

wherein the new abbreviations are introduced as follows: �

=�k�i�̄ik
�0��q��̄k, �=�k�i�̄k

�0��q��̄k
2, � j =�k�i�̄kj

�0��q��̄k, and

L=� j�k�i�̄kj
�0��q��̄k�̄ j. Substitution of �̄ j and � given by Eqs.

�25� and �26�, respectively, into �̃i yields a new frequency
we look for �̃i= ���̄i

�0�+�+L�+
��̄i
�0�−�−L�2+�2� /2. If

the above requirement is fulfilled, then �̃i will become an
eigenvalue of the transformed Hamiltonian. In order to im-
prove this approach further, it is now advantageous to work
with the Hamiltonian in the projective form.

3. Resolvent formalism

Instead of creation and annihilation operators, the same
Hamiltonian with the relevant bilinear parts can be expressed
in terms of state vectors, and therefore the corresponding

Schrödinger equation becomes �H̄0i� − 1
2 �̃i�q����i�=−V��i�,

where

H̄0i� =
1

2�
q
��̃i�q��2�i + 1� + �

j�i

�̃ j�q��2� j + 1�
 ,

V =
1

2�
q
��

j�i

�̃ij�q���ij + � ji� + �
j��i�

�
k�j

�̃ jk�� jk + �kj�
 ,

with the projection operator �ij = ��i��� j�. The phonon states

��i� are defined by the relation �H̄i�− �̃i�q� /2���i�=0. The so-
lution to such an equation can be obtained by using resolvent
formalism as discussed in Ref. 39. We can then multiply the
corresponding Schrödinger equation by its resolvent or

Green’s function �H̄0i� − �̃i�q� /2�−1,

1

�H̄0i� − 1
2 �̃i�q�� =

1

�̄i
�0��q� − �̃i�q�

�2�i + 1�

+ �
j�i

1

�̄ j
�0��q� − �̃i�q�

�2� j + 1� , �27�

to yield

��i� = −
1

�̄i
�0��q� − �̃i�q��j�i

�̃ij
�0��q�
2

�ij��i�

− �
j�i

��̃ij
�0��q�/2�

�̄ j
�0��q� − �̃i�q�

� ji��i�

− �
j��i�

�
k�j

��̃ jk
�0��q�/2�

�̄ j
�0��q� − �̃i�q�

� jk��i� . �28�
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The multiplication of the last equation by ��i� and �� j�, in
turn, on the left provides two equations, and then we obtain
the following two statements on comparing their coefficients:

cos � = −
1

�̄i
�0��q� − �̃i�q�

�

2
sin � , �29�

�̄ j sin � = −
1

�̄ j
�0��q� − �̃i�q�

�1

2
�̃ij

�0� cos � + � j sin �
 ,

�30�

which can be utilized to eliminate �, �, and � j to obtain the
frequency �̃i�q� of the ith component that we are concerned
with. It should be pointed out that all the components speci-
fied so far by the indices running from 1 to 6 represent the
center of mass and relative coordinates and in reality, after
quantization, they qualify phonon modes, and considering

the matrix elements Ãij that contain the quantum numbers �
along the circumference direction of the nanotube, they de-
termine the correct number of modes of the phonon spectra.

In order to simplify the calculation further, we make an ad
hoc assumption about the couplings between the components
in such a way that while the diagonalization of the particular
state is complete, say i, the residual nondiagonality among
the other components is to be minimal. This is well known as
the Fano problem.40 Let us first consider the diagonalization
of the distinguished component i itself, i.e., take � j =0,
which corresponds to the case where ��i� is coupled to all the
others, whereas the others are not mutually coupled; this re-
sults in the relation

�̃i�q� − �̄i
�0��q� = �

j�i

6
1

�̃i�q� − �̄ j
�0��q�

� �̄ij
�0��q�
2


2

, �31�

from which the �̃i�q� frequencies are to be calculated. We
note that some terms, such as �̄12

�0�, �̄13
�0�, �̄14

�0�, �̄25
�0�, �̄26

�0�, �̄35
�0�,

�̄36
�0�, �̄45

�0�, and �̄46
�0�, vanish, which arises from the fact that the

relevant matrix elements Ãij are pure imaginary. Therefore,
some terms on the right-hand side of the above equation are
missing, and eventually one gets a cubic algebraic equation,

�̃i
3+�̃�ijk�

�2� �̃i
2+�̃�ijk�

�1� �̃i+�̃�ijk�
�0� =0, whose three distinct real

roots are

�̃i�q� = −
1

3
�̃�ijk�

�2� +
2

3
�̃�ijk�

�+�


� 	cos 1
3 �arccos���̃�ijk�

�−� /2��̃�ijk�
�+� �3��

− cos�1

3
�arccos�− �̃�ijk�

�−� /2��̃�ijk�
�+� �3�� +

�

3
� .�

�32�

Instead of well-known Cardan’s algebraic solutions to the
cubic equation,41 we have used their trigonometric
equivalents42 due to their compactness. In Eq. �32�, we have
defined the following quantities:

�̃�ijk�
�2� = − ��̄i

�0� + �̄ j
�0� + �̄k

�0�� ,

�̃�ijk�
�1� = �̄i

�0��̄ j
�0� + �̄i

�0��̄k
�0� + �̄k

�0��̄ j
�0� −

1

4
���̄ij

�0��2 + ��̄ik
�0��2� ,

�̃�ijk�
�0� =

1

4
��̄k

�0���̄ij
�0��2 + �̄ j

�0���̄ik
�0��2� − �̄i

�0��̄ j
�0��̄k

�0�,

and used the abbreviations �̃�ijk�
�+� = ���̃�ijk�

�2� �2−3�̃�ijk�
�1� �1/2 and

�̃�ijk�
�−� = �27�̃�ijk�

�0� +2��̃�ijk�
�2� �3−9�̃�ijk�

�1�
�̃�ijk�

�2� �. All roots obtained

turn out to be real since �̃�ijk�
�−� /2��̃�ijk�

�+� �3�−1 is satisfied in

every case and therefore it represents the irreducible case
where all the roots are real. When one needs to include the
correlation effect between the other components, by taking
into account � j�0, diagonalization of other states with � j
�0 is needed. This, at a first glance, seems to be more com-
plicated, but one reaches the same result as Eq. �31� when
� j�0 is taken into account i.e., Eq. �31� can be used for
other five states.39 Equation �31� for six different i’s yields
six cubic equations in �̃i�q� resulting with 18 roots. Never-
theless, having known that the roots having the lowest sym-
metry are eligible, the remaining task is to look for a way of
classifying them according to this rule. Solutions satisfying
these rules which come from the cubic ones have the form

�̃i�q� = −
1

3
�̃�ijk�

�2� +
2

3
�̃�ijk�

�+� cos
1

3
�̃�ijk�, �33�

where

�̃�ijk� = arccos�− �̃�ijk�
�−� /2��̃�ijk�

�+� �3� + 2�ki.

ki takes values 1, 0, and 2 when i is equal to 1 �or 2�, 4 �or 6�,
and 3 �or 5�, respectively. In this respect, it should be noted
that, for i=1, . . . ,6, allowed values of j and k which we
show here by a �jk� pair for shorthand notation are �56�, �34�,
�24�, �23�, �16�, and �15�, respectively. These are the phonon
frequencies corresponding to each quantum number �.

E. Results

After the canonical transformations and the resolvent
formalism, we have obtained the phonon Hamiltonian

in the dimensionless and diagonalized form as H̄ph
=�q��q,���i=1

6 �̃i�q��ai
†ai+aiai

†�, where we now have the pho-
non frequencies �̃i in an analytical form. For a
�n ,n�-armchair carbon nanotube, there are N=2n carbon at-
oms in a unit cell; hence, the total number of phonon
branches is 6N. In order to characterize the phonon modes,
one needs to know the symmetry of armchair carbon nano-
tubes, which is described by nonsymmorphic rod groups �or
line groups�. Full symmetry of the line groups is investigated
in a series of papers by Damnjanović et al.17,43,44 The
�n ,n�-armchair carbon nanotubes with either even or odd
index n have a rod group G�n�, whose point group G0�n� is
isomorphic to D2nh, and their irreducible representations at
the � point are carefully analyzed by Alon in a recent work,25

where also correct number of Raman and IR active modes
are determined. The 6N phonon modes transform according
to the irreducible representations of D2nh and of these modes,
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eight Raman-active transform as �R=2A1g � 2E1g � 4E2g,
and three infrared-active transform as �IR=3E1u and are
fixed for all armchair nanotubes. These results are endorsed
by experimental data.45,46

At this point, we choose specific chiral numbers for a
sample armchair nanotube as �10, 10�, since there are numer-
ous works with which we compare the present results. There
are 66 distinct branches in the phonon spectra, corresponding
to 120 vibrational degrees of freedom in a unit cell of the
nanotube, of which 12 modes are nondegenerate and 54 are
doubly degenerate. We take the three scaling factors for
force-constant parameters as r1=1.000, r2=0.060, and r3
=0.024 as in the work of Mahan and Jeon, Ref. 16. It appears
that the final results for the phonon frequencies are very sen-
sitive to small changes in these parameters.

For a quantitative analysis of the present approach, we
compute the phonon modes for �=0 with the expression �i

�0�

obtained after the first transformation. Figure 3 shows the six
nondegenerate modes, of which the two are acoustical and
the four are optical whose values at the � point coincide with
the results of Mahan and Jeon, Ref. 16, as seen in Fig. 3.
However, as one increases the wave vector q, discrepancies
appear in the spectra, which necessitate a further diagonal-
ization. Apart from the disagreement for q�0, there is a
major drawback of the results arising from the disregard of
nondiagonal terms, that is, it does not accommodate mode
mixing where acoustical and optical modes combine to re-
move degeneracies at the crossing points. In order to remedy
this, we have performed a second transformation to diago-
nalize certain nonlinear terms and immediately after that, the
correct dispersion relations have been obtained analytically
within the scheme of the Fano problem, in spite of neglecting
some nonlinear terms. In Fig. 3, we see that inclusion of the
nonlinear terms indeed removes some degeneracies and
bring forward mode mixing so that a partial agreement with
results of Mahan and Jeon is obtained. However, as seen
from Fig. 4, both mode crossings and mixings at low ener-
gies, in particular, involving acoustical modes, show the
same behaviors as in various works, Refs. 11, 12, 15, and 23.

Essentially, by the first transformation, we have calculated
contributions coming from the terms aqi

2 and �aqi
† �2 to the

frequency of mode i. In the second transformation, we have
considered modifications due to the terms such as aqj

† aqj,
aqi

† aqj, and aqj
† aqk and their conjugates for i� j�k to �i

�0�,
during which we have left out aqi

† aqj
† , aqj

† aqk
† , and their conju-

gates for i� j�k. We ascribe the mode mixing to inclusion
of these nonlinear terms and the Fano procedure expedite to
choose the correct roots analytically.

We note that for �=0, there are six nondegenerate modes,
of which two are acoustical and the rest are optical. One of
the two acoustical modes, �̃3, is longitudinal and arises from
the quantization of the Qz component, and the other is a
torsional mode, �̃2, and arises from Q�; they have velocities
near q=0 of v3=24.3 km /s and v2=13.95 km /s, respec-
tively. Both acoustical modes transform as A2u, and all opti-
cal modes as A1g. The higher two optical modes, �̃5 and �̃6,
which arise from relative coordinates q� and qz, are 1600 and
1593 cm−1, respectively, and Raman active. These two
modes mix each other at about q=0.25 /c and keep their

optical characters all along the Brillouin zone. The remaining
two optical modes, �̃1 and �̃4, take place at 190 and
865 cm−1 at q=0 and arise from the coordinates Q
 and q
,
respectively. In the present approach, the lower mode �̃1
crosses the two acoustical modes, while the other one �̃4
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FIG. 4. Plot of �̃i�q� according to Eq. �33� for �a� �
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mixes with them. The former case does not agree with the
result of Mahan and Jeon, Ref. 16.

For �=10, we get the other six nondegenerate modes
which are all optical characters, and it appears that we get
mode crossings instead of mode mixing, contrary to the re-
sults of Mahan and Jeon. If we examine behaviors of �̃i from
�=1 to �=9, we see that complete mode mixing is present
up to �=7, and then crossings, two by two, appear. The
absence of mode mixing is due to the chosen form of trans-
formations and to omission of certain nonlinear terms.

We should also point out that solutions given by Eq. �33�
to cubic equation for each � are strictly divided into two
parts; while in one part �̃1, �̃5, and �̃6 modes are involved,
the other contains �̃2, �̃3, and �̃4 modes. We see that only
the modes in the same part are mixed, but in different parts
are crossed.

The modes for �=1 are of particular importance, since
one of these is doubly degenerate flexure mode, which has an
E2u symmetry. This has been observed in many investiga-
tions, and its existence is now very well established. In the
present work, this mode did not come out as an acoustical
branch but it appears to have a finite value at q=0, as seen in
Fig. 4. Furthermore, as is clearly seen from Figs. 3 and 4�b�,
respectively, our results, first, do not show up a gradual in-
crease in the highest longitudinal optical �LO� phonon
branch when moving away from the � point of the Brillouin
zone �BZ�, and, second, fail to predict the lowest LO phonon
mode for �= 	2 at the � point, which is approximately 14
times larger than the 12.6 cm−1 found by Jeon and Mahan.23

In particular, the former, i.e., the highest LO phonon branch
itself, is of great importance. When moving away from the �
point toward the boundary of the BZ, upward curvature of
the highest LO phonon dispersion is referred as the over-
bending feature and is attributed to the origin of the sharp
peak in Raman spectrum.14,15,18,19 As is seen from Fig. 3,
while results of Ref. 16 predict a difference between the
highest LO phonon frequency and the � point one as
104.84 cm−1, our result flattens in the vicinity of the � point
and then drops without showing a local maximum. However,
we think that, as indicated by Maultzsch et al.,18 including
the interactions up to fourth order would help reproduce the
experimentally observed overbending in the optical phonon
modes.

Nevertheless, we think that the ignorance of certain bilin-
ear phonon terms in the proposed diagonalization procedure
is the main obstacle in obtaining flexure mode and also
showing an anticrossing behavior of the related phonon
branches in the low energy region near the � point for small
values of circumferential quantum number �. We know that
Landau’s noncrossing theorem does not admit to such a
crossing of the levels having the same symmetry, and also it
tells us that, if there are two intersecting levels having the
same symmetry following an approximate calculation, they
will be found to move apart from each other after applying
the next approximation47 �see also Refs. 48 and 49 for recent
discussions�.

IV. ELECTRON-PHONON INTERACTION

The electron-phonon interaction is obtained from
the hopping interaction between carbon atoms: J0��Q�=J0

+J1� ·�Q, where �Q is the relative displacements of the
neighboring atoms.30 Contrary to the phonon part, only the
first-nearest-neighbor and bond bending interactions are to
be considered in the electron-phonon interaction.

A. Nearest-neighbor interactions

Here, as discussed in phonons, if one considers the carbon
atom A at the site j, then there are three nearest-neighbor B
atoms and the interaction term becomes

Hel-ph
I = J1�

j�

�� · �QB,j+� − QA,j���CA,j
† CB,j+� + CB,j+�

† CA,j� ,

�34�

where C† �C� are the creation �annihilation� operator for
electrons. CA�B�,j

† CB�A�,j terms in Eq. �34� indicate that an
electron hops from the carbon atom B �A� to neighboring A
�B�. Transition from the site representation to a wave vector
system is achieved by the transformation

CB,j+�i
=

1

nN

�
k��k,��

ei�kcl+��j�CB,kei�i
0�k,��, �35�

where N is the number of atoms in a unit cell and �i
0�k ,��

are phase factors and given by �1
0�k ,��=��1, �2

0�k ,��=kc
−��2, and �3

0�k ,��=−kc−��2, respectively. As k is the wave
vector for electrons along the direction of the tube axis, � is
a quantum number of the electrons along the circumference
direction of the tube and takes the same values as �. Simi-
larly, if we use Eqs. �5� and �6� for the phonon coordinates,
then the interaction term becomes

Hel-ph
I =

J1


Nn
�

i
�

q��q,��
�

k��k,��
�CA,k+q,�+�

† CB,k�ei�i
0�k,��

+ CB,k+q,�+�
† CA,k�e−i�i

0�k+q,�+����̃q
�i�1. �36�

If the property �i
0�k+q ,�+��=�i

0�k ,��+�i
0�q ,�� between

phases is used, then Eq. �36� is expressed in a more compact
form as follows:

Hel-ph
I =

J1


Nn
�

q��q,��
�

k��k,��
�
l=0

1

�CA,k+q,�+�
† CB,k�

+ �− 1�lCB,k+q,�+�
† CA,k��G�, �37�

where G� represents the functions ��� q
�i� cos �i and �i�� q

�i� sin �i

for �=0 and 1, respectively. While the former denotes the
intraband scattering of an electron from the carbon atom A
�B� with wave vector k��k ,�� to the state with wave vector
q+k��q+k ,�+�� of the carbon atom A �B�, the latter one
corresponds to the interband scattering of an electron from
the carbon atom A �B� with wave vector k��k ,�� to the
state with wave vector q+k��q+k ,�+�� of the carbon
atom B �A�. �i=�i

0�k ,��+ ��i
0�q ,�� /2�, and i=1,2 ,3 refer to

Q
, Q�, Qz and i=4,5 ,6 to q
 ,q� ,qz in �̃q
�i�, respectively, and

�� q
�i� in Eq. �37� is given by �� q

�i�=exp�−i�i
0�q ,�� /2��̃q

�i�. If we
now use creation and annihilation operators in Qi coordinates
by means of Eq. �14�, then the interaction term �Eq. �37��
becomes
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Hel-ph
I = �

q��q,��
�

k��k,��
�
i=1

6

�
l=0

1

Mi
I�l��q,k��CA,k+q,�+�

† CB,k�

+ �− 1�lCB,k+q,�+�
† CA,k���aqi

† + aqi� , �38�

where the electron-phonon interaction strength Mi
I	�q ,k�, as

� for l=0 and � for l=1, is defined by

Mi
I	�q,k� = J1� �

nNM
�1/2Ai

	

2

1

�i�q�

, �39�

with the coefficients Ai
	. It can be seen in Appendix B that

Ai
	’s given by Eq. �B1� depend on q ,k and the structural

angles �1 and �2.

B. Radial bond bending

We adopt a similar procedure to obtain the electron-
phonon interaction due to bond bending forces. As in the
case of phonon modes, there are two main terms arising from
the interactions of an A atom and neighboring three B atoms
and a B atom neighboring three A atoms, which are written
as follows:

Hel-ph
BB = J1�

j�

�nI · �QBj+� − QAj��CA,j
† CB,j+� + CB,j+�

† CA,j�

+ nII · �QAj+� − QBj��CB,j
† CA,j+� + CA,j+�

† CB,j�� ,

�40�

with

nI�II� · �QB�A�j+�i
− QA�B�j�

=
1


nN
�

q��q,��
nI�II� · �QB�A�

�i� �q�ei�i
0�q,�� − QA�B�


�q��exp�i�qc� + �� j��

=
1


nN
�

q��q,��
�̃I�II�

�i� exp�i�qc� + �� j�� . �41�

By introducing new phases �i, �i�, and �i�, which are given by
�1�k ,��=��1, �2�k ,��=−��2+kc, and �3�k ,��=−��2−kc,

�i�=��1, and �1�=��1, �2�=��̃+kc, and �3�=��̃−kc, respec-
tively, Eq. �40� can be written as a sum of two terms,
Hel-ph

BB =HA+HB, where these terms are

HA =
J1


nN
�

i
�

q��q,��
�

k��k,��
�̃I

�i��CAk+q,�+�
† CBk�ei�i�k,��

+ CBk+q,�+�
† CAk�e−i�i�k+q,�+��� , �42�

HB =
J1


nN
�

i
�

q��q,��
�

k��k,��
�̃II

�i�


�CBk+q,�+�
† CAk�e−i�i��k+q,�+��ei�i��k,��

+ CAk+q,�+�
† CBk�ei�i��k,��e−i�i��k+q,�+��� . �43�

It should be noted that these phases satisfy the following
relation: �i�k+q ,�+��=�i�k ,��+�i

0�q ,��. Similar to the

nearest-neighbor interaction, after calculating �̃I
�i� and �̃II

�i�

and then replacing them back into HA and HB yield the same
equation as in the nearest neighbor interaction Hamiltonian,
i.e., Eq. �37�, provided that G� now represents the functions
����� I

�i� cos��i�+�� II
�i� cos��i�� and i����� I

�i� sin��i�+�� II
�i� sin��i��,

for �=0 and 1, respectively, with �i=��1+ ���1 /2�
−�i��k ,��− ��i��q ,�� /2�. Here, the prime over the sums indi-
cates that i=3,6, i.e., the z components of Q and q, respec-
tively, should be excluded from the sums, since, by i=1,2,
we intend the coordinates Q
 ,Q� and, by i=4,5, the co-
ordinates q
 ,q�, respectively. We note that in case of the
bond bending interactions, the coefficients containing coor-
dinates satisfy the following simplified relations: �� II

�1�=−�� I
�1�


exp(−�1
0�q ,�� /2), �� II

�2�=−�� I
�3�, and �� II

�3�=−�� I
�2�. Finally, af-

ter the introduction of creation and annihilation operators,
the interaction Hamiltonian becomes

Hel-ph
BB = �

q��q,��
�

k��k,��
�

i
��

l=0

1

Mi
BB����q,k��CA,k+q,�+�

† CB,k�

+ �− 1�lCB,k+q,�+�
† CA,k���aqi

† + aqi� , �44�

where the interaction strength Mi
BB����q ,k� is defined, in the

same way as the nearest neighbor interaction, by the relation

Mi
BB����q,k� = J1� �

nNM
�1/2Di

	

2

1

�i�q�

, �45�

with the Di
	 elements given in Appendix B. Here, contrary to

the nearest neighbor interaction, Di
	 given by Eq. �B2� de-

pend only on the structural angles, and not on the q and k
wave vectors. The dependence on q and k of Mi

BB����q ,k�
enters through the �i�q� frequency.

C. Results

Although we have obtained the electron-phonon interac-
tions in analytical form, it is not still complete to use in any
application since the phonon part of the general Hamiltonian
underwent two successive unitary transformations for diago-
nalization procedure. Therefore, it is necessary to exploit the
same unitary transformations for the interaction parts as well,
so that we can, first, get rid of the dummy frequency �i�q�
and then obtain a renormalized frequency in accordance with
the phonon dispersion.

After the first transformation U1, the phonon operator part
of the interaction terms comprises a factor �cosh 2�i

−sinh 2�i�1/2= ��i�q� /�i
�0��q��1/2 and transforms as aqi

† +aqi

→ ãqi
† + ãqi= �cosh 2�i−sinh 2�i�1/2�aqi

† +aqi�. This eliminates
the dummy frequency �i�q� and renormalizes the interaction

strength as M̃i
I	�q ,k�= ��i�q� /�i

�0��q��1/2Mi
I	�q ,k�, and fur-

thermore we divide this result by the Raman frequency ��0
to make it dimensionless. We follow the same procedure
what we have done in the phonon part, i.e., we distinguish
the ith component from the other five distinct ones. There-
fore, we write Hel-ph,i

tot =Hel-ph,i+� j��i�Hel-ph,j wherein
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Hel-ph,i = �
q��q,��

�
k��k,��

�
l=0

1

M̄i
T����q,k��CA,k+q,�+�

† CB,k�

+ �− 1�lCB,k+q,�+�
† CA,k���aqi

† + aqi� , �46�

where

M̄n
T����q,k� =

J1

��0
� �

nNM
�1/21

2
�An

	 + Dn
	�

1

�n�q�

, �47�

in which the second term in parentheses takes nonzero values
for i�3,6 otherwise it should be treated as zero. Since the
second transformation changes aqi

† +aqi and aqj
† +aqj, accord-

ing to Eqs. �22� and Eq. �23�, the interaction with the mode i
can then be written as

Mi
T����q,k� = cos �M̄i

T����q,k� + �
j��i�

�̄ j sin �M̄ j
T���

�48�

M j
T����q,k� = M̄ j

T����q,k� − �̄ j sin �M̄i
T����q,k�

− �
k��i,j�

�̄ j�̄k�1 − cos ��M̄k
T���. �49�

Here, cos � and sin � are known from the phonon parts, and
they can easily be found as sin �= 	
F / �1+F� and cos �

= 	1 /
�1+F�, where � is defined to be

� = �
j�i

6
1

��̃i�q� − �̄ j
�0��q��2� �̃ij

�0��q�
2


2

.

Furthermore, �̄ j sin � in Eqs. �48� and �49� is given by

�̄ j sin � =
1

�̃i�q� − �̄ j
�0��q�

� �̄ij
�0��q�
2

cos � + � j sin �
 .

�50�

Thus, we have obtained a Fröhlich-type Hamiltonian that has
the phonon part arising from nearest-neighbor, next-nearest-
neighbor, and bond bending interactions and the electron-
phonon interaction part, which is comprised of nearest-
neighbor and bond bending interactions:

H = J0 �
j��m��

�
�i

�CB,j+�i

† CA,j + CA,j
† CB,j+�i

� + �
i

Hi,

with

Hi = �
q��q,��

��̃i�q��aqi
† aqi +

1

2
� + H̃el-ph,i + �

j��i�
H̃el-ph,j ,

H̃el-ph,i = �
q��q,��

�
k��k,��

�
l=0

1

Mi
T����q,k��CA,k+q,�+�

† CB,k�

+ �− 1�lCB,k+q,�+�
† CA,k���aqi

† + aqi� ,

where one can drop the third term in Hi since it represents a
further nondiagonality. As a final remaining task, we shall
now briefly discuss the effect of the diagonalization of Hel
onto the electron-phonon interaction part found above. To

achieve this, we will propose a third unitary transformation
acting on fermion operators. However, before doing this, we
should apply the routine procedure for the well-known tight-
binding Hamiltonian given in the Sec. I, i.e., by performing
the sum over the nearest neighbors, then tight-binding
Hamiltonian takes the following form:

Hel = J0 �
k��k,��

�CA,k,�
† CB,k,���k� + �*�k�CB,k,�

† CA,k,�� ,

�51�

with ��k�=�i=1
3 exp�i�i�k��= ���k��exp�i��. Now, Hel can be

diagonalized by introducing a third unitary transformation as
U3=exp�S3�k��, with S3�k�=�CA,k

† CB,k−�*CB,k
† CA,k, under

which the fermion operators CA,k and CB,k transform as39

C̃A�B�,k=CA�B�,k cos����CB�A�,k exp��i��sin���, where �

= ���exp�+i�� is used. Here, the upper sign belongs to those
given in subscript parentheses. Therefore, the resulting

Hamiltonian H̃el=U3
−1HelU3 can be diagonalized by choosing

���=� /4 and �=�, yielding energies E�	�= 	J0���k��. In
fact, this choice of parameters corresponds to the well-
known Bogoliubov transformation, used in Ref. 30, as well.
It should also be pointed out that the variation of the expec-

tation value of H̃el by the fermionic ground state, i.e., �H̃el�0,
with respect to both ��� and �, respectively, gives the same
condition for diagonalization. Hence, Eq. �51� becomes

Hel = �
k��k,��

�E�−�CA,k,�
† CA,k,� + E�+�CB,k,�

† CB,k,�� ,

which is the well-known tight-binding result, i.e., E�	�

= 	J0���k��= 	J0

1+4 cos2�kc�+2 cos�kc�2 cos���̃�. If

one transforms the electron-phonon interaction Hamiltonian
given by Hel-ph,i

tot in the same way and performs the sum over
�, then the result turns out to be

Hel-ph,i
tot = �

q
�

k
�Di�k,q��aqi

† + aqi� + �
j��i�

D j�k,q��aqj
† + aqj�
 ,

�52�

where we have defined the operator

D��k,q� = �L�
�−�CB,k+q

† CB,k − L�
�+�CA,k+q

† CA,k� + exp�+ i��


�L�
�+�CA,k+q

† CB,k + exp�− i��L�
�−�CB,k+q

† CA,k� ,

with  	= �exp�−i��k��	exp�+i��k+q��� /2 and Li
�	�

=Mi
T�+� +

*	Mi
T�−� −

*. To gain a further insight into Eq.
�52�, one considers the case �=0 for the electron states.
Since it corresponds to taking exp�i��k��=1, hence  −=0
and  +=1, and finally the total Hamiltonian becomes
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H = �
k

�E�+�CA,k
† CA,k + E�−�CB,k

† CB,k�

+ �
i

�
q
���̃i�q��aqi

† aqi +
1

2
�

+ �
k
�Di�k,q��aqi

† + aqi� + �
j��i�

D j�k,q��aqj
† + aqj�
� ,

�53�

with

D��k,q� = M�
T�+��CB,k+q

† CB,k − CA,k+q
† CA,k� + M�

T�−�


�CA,k+q
† CB,k − CB,k+q

† CA,k� ,

while the first term in the electron-phonon interaction part
represents the intraband transitions and the other one corre-
sponds to interband transitions. It should be noted that sum
over k in Eq. �53� refers to the case with �=0.

V. SUMMARY AND CONCLUSION

In conclusion, we presented a detailed investigation for
phonon dispersion relations and electron-phonon interactions
in armchair SWCTs, in which we found analytical expres-
sions for phonon modes and a Fröhlich-type Hamiltonian.
Our approach was based on mass and spring model, origi-
nally developed in Refs. 16 and 30 with incorporation of
bond bending potentials, but we furthered classical lattice
vibrations to obtain fully quantized phonon modes. After
quantization, the phonon Hamiltonian contained phonon cre-
ation and annihilation operators in quadratic forms, which
were diagonalized by consecutive canonical transformations
to obtain phonon frequencies. We have also used the resol-
vent formalism to get phonon frequencies in analytical
forms, where correct roots of phonon modes have been cho-
sen by procedure of the Fano problem. During this proce-
dure, we fixed the Raman line 1600 cm−1 and used the same
values of spring constants as in Refs. 16 and 30 to obtain
other modes of the full spectrum.

We also obtained electron-phonon interaction terms from
the hopping interaction between carbon atoms, where we
considered only nearest-neighbor and bond bending interac-
tions. Here, we employed the same canonical transforma-
tions as the phonon part so that they comprised the correct
frequencies of phonon modes. This gave us the coupling
strength in terms of the frequencies �̃i, the wave vector q, the
quantum numbers �, the angles �1 and �2, the chiral numbers
�n ,n�, and the hopping parameters J0 and J1. It should be
noted that the contribution coming from the bond bending
did not have q dependence.

The comparison of our analytical results with the existing
literature is reasonably good but not perfect, especially in
that they fail to predict flexure mode and the lowest LO
phonon branch correctly and, for small values of circumfer-
ential quantum number �, yield a crossing behavior of pho-
non modes in the low energy region. We trace the inad-
equacy in this region back to the choice of canonical
transformations and omission of certain quadratic terms in

the diagonalization procedure. Perhaps, implementation of a
more sophisticated additional unitary transformation may be
needed at this stage so as to improve this unsatisfactory
point.

We conclude by pointing out various implications for the
framework developed in the present paper. Here, we have
been solely concerned with one type of SWCNTs, namely,
armchair. Extensions to zigzag and chiral SWCNTs, as well,
can be achieved by just taking their special geometries of
these nanostructures into account. Further, our consideration
can also be extended to graphene.

APPENDIX A

The nonzero coefficients of the matrix A�1� for the
nearest-neighbor interactions required to calculate the rel-
evant lattice potential given by Eqs. �12� are given in this
appendix. They are calculated with the aid of explicit expres-
sions �̃�i� factors given in Eq. �9� as

A11
�1� = A44

�1� = �s1
0�2 + ��s2

0�2/2� ,

A22
�1� = A55

�1� = �c1
0�2 + ��c2

0�2/2� ,

A33
�1� = A66

�1� = 3/2, �A1�

for diagonal ones, and

A12
�1� = A45

�1� = − s1
0c1

0 + �s2
0c2

0/2� ,

A14
�1� = �s1

0�2 exp�i��1� + ��s2
0�2 exp�− i��2�cq

0/2� ,

A15
�1� = − A24

�1� = c1
0s1

0 exp�i��1� − �c2
0s2

0 exp�− i��2�cq
0/2� ,

A25
�1� = − �c1

0�2 exp�i��1� − ��c2
0�2 exp�− i��2�cq

0/2� ,

A16
�1� = i
3s2

0 exp�− i��2�sq
0/2,

A26
�1� = A35

�1� = i
3c2
0 exp�− i��2�sq

0/2,

A34
�1� = − i
3s2

0 exp�− i��2�sq
0/2,

A36
�1� = − 3 exp�− i��2�cq

0/2, �A2�

for the nondiagonal ones. With the same procedure, we find
the nonzero coefficients of the matrix A�2� for the next-
nearest-neighbor interactions to be

A11
�2� = A44

�2� = 6�s̃0�2�1 + cq
0c̃�

0� ,

A22
�2� = A55

�2� = 6�c̃0�2�1 − cq
0c̃�

0� ,

A33
�2� = A66

�2� = 2�1 − cq
0c̃�

0 + 4�sq
0�2� ,

A12
�2� = A45

�2� = 6is̃0c̃0s̃�
0cq

0,

A13
�2� = A46

�2� = 2i
3s̃0sq
0c̃�

0 ,
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A23
�2� = A56

�2� = 2
3c̃0sq
0s�

0 . �A3�

Next we perform the same steps for the coefficients related to
bond bending interactions,

A11
�3� = A44

�3� = �D1�2 + �D3�2 = 2�c1
0�2 + 4�c2

0�2�1 + �cq
0�2�

+ 4c1
0c2

0�1 + c̃�
0cq

0� ,

A22
�3� = A55

�3� = �D2�2 = �s1
0�2�1 − 2c̃�

0cq
0 + �cq

0�2� ,

A14
�3� = − D1

*�D3 + D3
*�ei��1 = − 2�c1

0 + 2c2
0��c1

0ei��1

+ 2c2
0cq

0e−i��2� ,

A15
�3� = − A24

�3� = D2
*D3

*ei��1 = s1
0�c1

0 + 2c2
0��ei��1 − cq

0e−i��2� ,

A12
�3� = − A45

�3�* = D1
*D2 = s1

0�c1
0�1 − c̃�

0cq
0� − icq

0s̃�
0�c1

0 + 2c2
0�

− 2c2
0�cq

0�2 + 2c2
0cq

0c̃�
0� , �A4�

with D1=c1
0+2c2

0cq
0 exp�i��̃�, D2=s2

0�1−cq
0 exp�i��̃��, and

D3=c1
0+2c2

0. Note that the coefficients Aij
�k� form a square

matrix A of order 6
6. In this appendix, we will also give

the diagonal Ãii’s together with the nonzero Re Ãij coeffi-
cients, given in Eq. �20�:

Ã11 = r1�2�s1
0�2�1 + c̃1�

0 � + �s2
0�2�1 + c̃2�

0 cq
0�� + 12r2�s̃�

0�2�1

+ c̃�
0cq

0� + 2r3�2�c1
0�2�1 − c̃1�

0 � + 4�c2
0�2�1 + �cq

0�2

− 2c̃2�
0 cq

0� + 4c1
0c2

0�1 + c̃�
0cq

0 − c̃2�
0 cq

0 − c̃1�
0 �� ,

Ã22 = r1�2�c1
0�2�1 − c̃1�

0 � + �c2
0�2�1 − c̃2�

0 cq
0�� + 12r2�c̃�

0�2�1

− c̃�
0cq

0� + 2r3�s1
0�2�1 + �cq

0�2 − 2c̃�
0cq

0� ,

Ã33 = 3r1�1 − c̃2�
0 cq

0� + 4r2�1 + 4�sq
0�2 − c̃�

0cq
0� ,

Ã44 = r1�2�s1
0�2�1 − c̃1�

0 � + �s2
0�2�1 − c̃2�

0 cq
0�� + 12r2�s̃�

0�2�1

+ c̃�
0cq

0� + 2r3�2�c1
0�2�1 + c̃1�

0 � + 4�c2
0�2

„1 + �cq
0�2

+ 2c̃2�
0 cq

0
… + 4c1

0c2
0�1 + c̃�

0cq
0 + c̃2�

0 cq
0 + c̃1�

0 �� ,

Ã55 = r1�2�c1
0�2�1 + c̃1�

0 � + �c2
0�2�1 + c̃2�

0 cq
0�� + 12r2�c̃�

0�2�1

− c̃�
0cq

0� + 2r3�s1
0�2�1 + �cq

0�2 − 2c̃�
0cq

0� ,

Ã66 = 3r1�1 + c̃2�
0 cq

0� + 4r2�1 + 4�sq
0�2 − c̃�

0cq
0� , �A5�

and

�Re Ã15

Re Ã24
� = r1�− 2s1

0c1
0�1 + c̃1�

0 � + s2
0c2

0�1 	 c̃2�
0 cq

0��

+ 2r3s1
0�c1

0�1 − c̃�
0cq

0� − 2c2
0�cq

0�2 � �c1
0 + 2c2

0�


�c̃1�
0 − c̃2�

0 cq
0� + 2c2

0cq
0c̃�

0� ,

�Re Ã16

Re Ã34
� = � 
3r1s2

0sq
0s̃2�

0 ,

�Re Ã23

Re Ã56
� = 	 
3r1c2

0s1
0s̃2�

0 + 4
3r2c̃0s̃�
0sq

0. �A6�

APPENDIX B

The coefficients required in calculating the electron-
phonon interaction amplitudes for armchair CNTs are given
in this appendix. For the electron-phonon interactions, we
can represent the relevant equations by the matrix

�A1�4�
+�−�

A5�2�
+�−� � = C1

+�−��+ s1
0

− c1
0 � + C2

+�−��s2
0

c2
0 � ,

�A1�4�
−�+�

A5�2�
−�+� � = iS1

+�−��+ s1
0

− c1
0 � − iS2

+�−��s2
0

c2
0 � ,

�− iA6�3�
−�+�

+ A6�3�
+�−� � = − 
3sk

0�c̃2�
0

s̃2�
0 � 	 skq

0 �c̃2��
0

s̃2��
0 � , �B1�

with

C1
	 = c̃1�

0 	 c̃1��
0 , C2

	 = ck
0c̃2�

0 	 ckq
0 c̃2��

0 ,

S1
	 = s̃1�

0 	 s̃1��
0 , S2

	 = ck
0s̃2�

0 	 ckq
0 s̃2��

0 .

for the nearest neighbor, and

D1
+/c1

0 = D5
+/s1

0 = i�− s̃1�
0 − s̃1�

0 + s̃1��
0 � − �1 − c̃1�

0 � ,

D2
+/s1

0 = D4
+/c1

0 = − is̃1�
0 + �1 + c̃1�

0 − c̃1�
0 − c̃1��

0 � ,

D1
−/c1

0 = D5
−/s1

0 = − �c̃1�
0 − c̃1��

0 � ,

D2
−/s1

0 = D4
−/c1

0 = − i�s̃1�
0 + s̃1��

0 � , �B2�

for bond bending interactions, where we have also defined
the following abbreviations: c̃i����

0 =cos(�����i), s̃i����
0

=sin(�����i), c̃i��
0 =cos(��+���i), and s̃i��

0 =sin(��+���i),
for i=1 and 2, respectively.
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